
A Provenance Tracking Filesystem1
1 Facilitated by Polkadot Substrate
ParachainsEmbodying provenance tracking in an easily attachable filesystem

facilitating widespread adoption.

Gary Mawdsley CTO/CEO Lockular Limited

April 20222
2 Updated August 2023 to include
CoreTime as per Polkadot Decoded
2023This document presents the Lockular Provenance Tracking filesystem,

which incorporates provenance tracking directly into its architecture
through the use of cryptographic methods and blockchain technology.
This filesystem serves as a foundational element for ensuring complete
provenance of data stored and modified on POSIX filesystems.

Maybe more detailed abstract?

Introduction

At the core of computing, filesystems play a pivotal role. The effi-
ciency and functionality of cloud computing are largely due to the
extensive virtualisation of machines and applications. These are es-
sentially defined by metadata files that conjure a virtual environment
on larger hardware infrastructures. In such a setup, every component
of a cloud-based system, including the filesystems, is virtualised.

This virtualisation leads to significant gains in efficiency and se-
curity, enabling organisations to swiftly activate their computing
capabilities using metadata that defines their computing environ-
ments, coupled with their application data. In today’s context, an
organisation’s computing resources is entirely conceptualised as data:
a combination of application data and metadata describing the com-
puting environment.

Viewing filesystems not as tangible drives but as layers of meta-
data that facilitate access to file blocks and the filesystems’ metadata
enhances the interpretation expected by applications.

The proposition here leverages this understanding to extend
filesystem protocols, integrating them with a standard blockchain
validation process. This integration aims to provide an immutable
audit trail of file activity.

While there are existing solutions from hardware and software
vendors for tracking file changes, the critical distinction here is the
elimination of any superuser capability to modify historical records
yielding a regime of immutable provenance. This underscores the
significance of incorporating blockchain technology.

What is proposed is an augmentation of the current virtual filesys-
tem paradigm by introducing unavoidable trigger steps for the im-
mutable tracking of file modifications. Here are the significant points:

• Provenance Tracking through Blockchain: The filesystem uses

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 2

blockchain technology to create an immutable audit trail for file
operations, ensuring that no superuser can alter historical records.
This is a critical feature for enhancing security and trust in the
system.

• Integration of Shamir’s Secret Sharing (SSS): The filesystem incor-
porates SSS to split the filesystem’s sensitive data (both metadata
and file blocks) into shares that can only be reconstructed with a
predefined number of parts. This splitting and reassembly process
is crucial as it provides a protocol hook on which to anchor the
state transitions that serve as provenance triggers, thereby enhanc-
ing both security and the functionality of provenance tracking.

• Use of Polkadot Parachain: The system utilises a Polkadot parachain
for enhanced security and interoperability within the blockchain
network. This allows the filesystem to benefit from the shared
security and interoperability features of the Polkadot network.

• Multi-Signature Protocol: It employs a multi-signature protocol
to require consensus among multiple stakeholders (users, organ-
isation, platform) for critical operations, adding another layer of
security and collaborative decision-making.

• FUSE and NFS Integration: The filesystem is adaptable to different
applications through its support for FUSE and NFS APIs, allowing
it to operate both within and outside of application process spaces.

• Redis-based Shares Repository: For robust and scalable storage
of the shares, the system uses a Redis-based repository, ensuring
performance and reliability.

• Privacy and Security Measures: The document discusses various
mechanisms to ensure the privacy and security of the data, includ-
ing cryptographic commitments and zero-knowledge proofs.

These significant points outline a sophisticated system designed
to enhance the security, reliability, and efficiency of data manage-
ment in cloud-based and distributed computing environments. The
document emphasises the innovative use of blockchain and crypto-
graphic techniques to address the challenges of provenance tracking
in filesystems.

Moreover, this approach is built on standards and integrates the
following industry standard technologies and components:

• Shamir’s Secret Sharing (S3): This cryptographic technique divides
a secret into several parts, requiring only a specific subset (the
threshold) of these parts to reassemble the original secret. Talk
about the polynomial nature of Shamir.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 3

• State Transition System: A framework in which changes in state
are triggered by specific inputs marshalled by a set rules. Within
the context of blockchain, these state transitions are initiated by
transactions that are triggered by filesystem operations that in turn
trigger the storage protocol that invoke the Shamir operations.

• Polkadot Parachain: A specialised, virtual filesystem focused
blockchain that links to the Polkadot network, gaining from its
shared security and the ability to interoperate.

• Multi-Sig Protocol: A cryptographic scheme enabling multiple
users to collaboratively engage in a transaction within the filesys-
tem, maintaining the privacy of their inputs while collectively
determining the transaction’s outcome.

• FUSE and NFS Filesystem APIs: Standard virtual interfaces for
filesystem integration, facilitating external app integration with the
filesystem.

• Shares Repository: A platform-independent, replicated, and per-
sistent storage solution for the shares, ensuring robustness and
scalability. This is switched out to any preffered high performant
cache and database. For large volumes then Cassandra is a very
good choice, Redis for nimble high speed.

• IPFS Protocol: Used to handle large binary object file blocks lever-
aging content addressable storage. (explain about the effect of
different keys on the content)

This approach is based on dividing the filesystem file blocks and
filesystem metadata (referred to as the secrets) into multiple parts.
The division and merging of hese parts are managed by multiple
participants within a multi-signature blockchain framework. Each
step of division and merging follows a defined sequence of state
changes, which are enacted and recorded on a blockchain, serving as
an immutable log.

Detail

Designing the Scheme

Shamir’s Secret Sharing Integration

This filesystem architecture stores both its metadata and filesystem
blocks as encrypted secrets, utilising a secret sharing scheme. The
segmentation of these secrets into shares, and their subsequent re-
combination, is managed via a Polkadot substrate parachain. Specifi-
cally, the encoding of the shares aligns directly with a state transition

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 4

model. The designed state transitions are represented on a parachain
and serve as checkpoints for initiating the recording of audit infor-
mation onto the blockchain. The audit information captured corre-
sponds with changes to the files. While the division of secrets into
shares enhances security, the critical aspect is that the disassembly
and reassembly protocol must be implemented, thus serving as a
mandatory gateway through which data must pass, providing an
unavoidable checkpoint for laying down immutable audit records.

Shamir’s Secret Sharing (SSS) is a cryptographic method that di-
vides a secret into multiple parts, known as shares. Note here the
secret mentioned is filesystem info. To reconstruct the original se-
cret, a predefined number of shares (threshold) are required. This
ensures that no single party can access the secret without collabora-
tion. Shamir’s Secret Sharing (SSS) is considered to be information-
theoretically secure, meaning that it provides a level of security that
does not depend on computational assumptions. In SSS, a secret is
divided into parts, and only when a sufficient number of these parts
(threshold) are combined can the original secret be reconstructed.
The security of SSS lies in the fact that any number of shares less
than the threshold reveals no information about the secret, making it
secure against any adversary with unlimited computational power, as
long as the threshold condition is not met.

Shamir’s Secret Sharing (SSS) is based on polynomial interpolation,
specifically using Lagrange interpolation. The process is summarised
in two main phases: Share Distribution (split) and Secret Recon-
struction (reassembly).

Share Distribution

1. Choose a Prime Number: Select a large prime number p, which
will define the finite field Fp.

2. Define the Secret: Let S be the secret, where S is an element of
Fp.

3. Generate a Polynomial: Construct a polynomial f (x) of degree
t − 1 (where t is the threshold number of shares needed to recon-
struct the secret):

f (x) = a0 + a1x + a2x2 + . . . + at−1xt−1 mod p

Here, a0 = S (the secret), and a1, a2, . . . , at−1 are randomly chosen
coefficients in Fp.

4. Create Shares: For each participant i, compute a share (xi, yi)

where yi = f (xi) mod p and xi is a unique non-zero element of Fp.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 5

Secret Reconstruction

1. Gather Threshold Shares: Collect at least t shares (xi, yi).
2. Use Lagrange Interpolation: Compute the Lagrange basis poly-

nomials lj(x) for j = 1, 2, . . . , t:

lj(x) = ∏
1≤m≤t

m ̸=j

x − xm

xj − xm
mod p

3. Reconstruct the Secret: Evaluate the polynomial at x = 0 to find
S:

S =
t

∑
j=1

yjlj(0) mod p

This method ensures that the secret S is reconstructed only when
at least t shares are combined, and any fewer than t shares reveal no
information about the secret, maintaining its confidentiality.

Multi-signature (multi-sig) protocols are integrated with Shamir’s Se-
cret Sharing (SSS) to enhance the security and robustness of the secret
sharing scheme by requiring multiple parties to agree before any crit-
ical actions, such as reconstructing the secret, is executed. Instead of
allowing any individual who gathers the threshold number of shares
to reconstruct the secret, the multi-sig setup requires signatures from
multiple authorised parties to initiate the reconstruction process. This
means that even if someone collects enough shares, they would still
need the collaboration of other stakeholders to access the secret. Signatures of the parties provided via

their wallets

By distributing the control among multiple parties, the risk of a
single point of failure or abuse is significantly reduced. Each partici-
pant holds only a part of the necessary credentials (signatures), and
the secret can only be accessed when a predefined subset of these
participants agrees and provides their signatures. This operates in
a blockchain environment and so the transaction to reconstruct the
secret is treated like any other transaction that requires validation.
The multi-sig setup ensures that the transaction is only validated
when the required number of signatures from the designated parties
is present. Different roles could be assigned to

different parties involved in the multi-
sig arrangement. For example, some
might only be able to initiate a request
for secret reconstruction, while others
might be responsible for approving
these requests. This role-based access
control can further enhance the security
and integrity of the secret management
process. This is beyond the current
feature set.

The PinkScorpion Protocol - State Transitions

Shamir’s Distribution (splitting) and Reconstruction (reassembly)
operations are modelled as state transitions and implemented on a
blockchain. This is the means by which transitions between states
occur, albeit with the intense processing required taking place off
chain (see below). The filesystem’s inherent blockchain transactions

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 6

represent the processes of data splitting and data reassembly. Each
transaction is validated by public blockchain validators.

State Transition System - Splitting the Secret (Distribution)

• Initial State: The initial parachain state where the secret has not yet
been split or distributed.

• Secret Splitting Transaction: A transaction type representing the
splitting of the secret. This transaction takes the secret as input (in
fact a reference to it as the secret itself shouldn’t be on-chain) and
generates N shares using (S3), where a minimum of M shares (the
threshold) is required to reconstruct the secret.

• State Transition for Splitting: The execution of the secret splitting
transaction results in a state transition where the new state records
the distribution of shares (commitments to these shares) to the
respective storage locations.

State Transition System - Reassembling the Secret (Reconstruction)

• Reassembly Request Transaction: A transaction type for initiating
the reassembly of the secret. This requires the host locations to
submit their commitment to their shares.

• Verification and Reassembly: Upon receiving the required thresh-
old number of shares, a state transition occurs that verifies the
shares and reconstructs the secret. This involves off-chain workers
for privacy and computational complexity concerns.

• Final State: The final state reflects the successful reassembly of the
secret. In the future this may be used to trigger further actions on
the parachain, such as unlocking assets, changing permissions, or
initiating other state transitions.

Transaction Validation Process in Polkadot

What follows is a precise defintion of how the validation of the given
state transitions occurs in respect of the actors involved.

• Let S represent the state of the blockchain.

• T represents a transaction that modifies the state.

• S′ is the new state after applying the transaction T to state S.

• V = {v1, v2, . . . , vn} is the set of validators responsible for validat-
ing the transaction.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 7

• Each validator vi has a corresponding weight wi, which could
represent their stake or voting power in the network.

Transaction Validation Process

1. Transaction Proposal:

• A transaction T is proposed to change the state from S to S′.

• T is broadcast to all validators in V.

2. Validation by Each Validator:

• Each validator vi checks whether the transaction T is valid
under the current state S.

• This involves executing the transaction logic and verifying that
it adheres to the network’s consensus rules enshrinned in the
filesystem blockchain defintion.

• This is represented as a validation function f :

f (S, T) =

true if T is valid under S

false otherwise
The document is written as though
the implementation follows the con-
struction of a blockchain definition
(parachain) but it may become appar-
ent that a smart contract is the most
expedient route.

3. Collection of Validator Signatures:

• If f (S, T) = true, validator vi signs the transaction.

• The signature is represented as σi(T), which is the signature of
validator vi on transaction T.

4. Aggregation of Signatures:

• The signatures are collected and aggregated.

• Let Σ(T) represent the set of all valid signatures from validators
who approved the transaction.

5. Threshold Check:

• For the transaction T to be considered valid, the sum of the
weights of the approving validators must meet a predefined
threshold θ (defined for the blockchain).

• The transaction is valid if:

∑
vi∈Σ(T)

wi ≥ θ

Parachain speeds are increasing all
the time and as the document update
is being made it should be noted that
Aleph Zero a Layer1 blockchain with a
polkadot bridge via a parachain slot has
reached 1000 tps with 10000 tps in their
sights

6. State Transition:

• If the threshold is met, the state transition is applied, moving
from S to S′.

• This is represented as:

S T−→ S′

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 8

Multi-Sig Protocol for Collaborative Transactions

Here the focus is on a group different from the set of blockchain val-
idators. This group comprises the parties interested in the integrity of
the filesystem: the user, the design authority (org) and the platform.

Multi-Signature (Multi-Sig) protocols require multiple parties (sig-
natories) to sign off on a file operation before it is executed. This
adds a layer of security and consensus, ensuring that actions (like
reconstructing a secret or authorising a state transition) receive ap-
proval from multiple stakeholders.

Parties Involved

• fsUser: The user of the filesystem who initiates the operation.

• designAuthority: The authority responsible for overseeing the
design and integrity of the filesystem.

• platform: The underlying platform or infrastructure on which the
filesystem operates.

Multi-Sig Protocol Description

The multi-sig protocol ensures that a transaction representing a state
transition in the filesystem is only formed when all required parties
agree to the operation. This is crucial for maintaining the security
and integrity of the filesystem operations.

Precisely this is the multi-sig process:

Let T represent the transaction proposed to change the state of the
filesystem. The transaction T must be signed by all required par-
ties to be considered valid. Let σfsUser(T), σdesignAuthority(T), and
σplatform(T) represent the signatures of the filesystem user, the design
authority, and the platform, respectively.

Valid(T) =

true if σfsUser(T) ∧ σdesignAuthority(T) ∧ σplatform(T) are all present

false otherwise

Transaction Formation and Validation

For the transaction T to proceed:

1. Each party must independently sign the transaction, indicating
their approval.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 9

2. The signatures are collected and verified.

3. If all required signatures are verified as present and valid, the
transaction T is approved to trigger the state transition.

T is executed if Valid(T) = true

Validity is true allows the reconstruction to take place.

FUSE and NFS Filesystem APIs

This section outlines two conventional methods for designing a vir-
tual filesystem that conforms to POSIX standards for the operating
system. By supporting both APIs, the filesystem is integrated in two
distinct and essential manners, each tailored to specific use cases.

Both FUSE (Filesystem in Userspace) and NFS (Network File System)
protocols provide mechanisms that allow for the creation of custom
file systems, though they serve different specific purposes and oper-
ate in distinct contexts.

FUSE (Filesystem in Userspace) Purpose: FUSE is designed to allow
non-privileged users to create their own file systems without altering
the OS kernel code. This is achieved by running the file system code
in user space while the FUSE module provides only a "bridge" to the
actual kernel interfaces.

Functionality: FUSE provides a framework where developers can
implement a filesystem in user space, handling all the standard op-
erations defined by the operating system’s VFS (Virtual File System).
This allows for the creation of highly customized file systems over
various types of resources and backends like databases, cloud ser-
vices, or custom storage mechanisms, without needing deep integra-
tion into the operating system kernel.

Customisation: It enables bespoke filesystem development that is
tailored to specific needs or experimental filesystem features, which
is developed and tested without risking system stability.

NFS (Network File System) Purpose: NFS, on the other hand, is used
primarily for distributed file systems to allow a computer to access
files over a network as easily as if they were on its local disks. This
protocol defines a few operations for file handling and directory
browsing which are implemented by a server allowing clients to
access files remotely.

Functionality: NFS allows the user to mount part of a remote file

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 10

system on a local system, making it appear as if the files are local.
This is crucial for environments where multiple systems need to
access and share the same files.

Customisation: While NFS itself is less about creating entirely new
types of file systems and more about extending the accessibility of
existing file systems across networks, it is integrated into custom
solutions that require remote file access. However similar to FUSE it
is entirely possible to reconstruct the filesystem behind the NFS API.
This IS the Lockular filesystem!

Both FUSE and NFS address the need to extend the functionality of
traditional file systems, albeit in different ways. FUSE is more about
creating entirely new file systems with unique behaviours or backing
stores, while NFS is about extending the reach of an existing file sys-
tem across a network with potential new backend implemetationsn.

Both is part of a broader strategy to handle files in a way that tra-
ditional local file systems might not support, such as in distributed,
decentralized, or cloud-based architectures. FUSE allows the use
case where the Lockular filesystem is more tightly integrated into
the process offering an elevated security profile, but at a cost of less
flexibility and a larger memory footprint.

Privacy and Security Considerations

Privacy: That the secret or individual shares are not exposed on the
blockchain is ensured. Use of cryptographic commitments and zero-
knowledge proofs are made as necessary. In the context of our use
of Shamir’s Secret Sharing (SSS) to create shares of filesystem data,
where operations are controlled via a multi-signature (multi-sig)
protocol, zero-knowledge proofs (ZKPs) are particularly useful:

• Identity Verification: ZKPs are used to prove that a party sub-
mitting a share is authorised to do so without revealing their ac-
tual identity or other sensitive credentials. This is crucial for the
filesystem in maintaining privacy and security, ensuring that only
eligible parties participate in the process.

• Share Integrity: When a share is submitted by an authorised party,
ZKPs are used to prove that the share has not been tampered with
and is indeed a valid part of the secret. This proof is therefore
achieved without revealing the share itself, thus maintaining confi-
dentiality.

• In the future ZKPs could be used to prove that the submission

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 11

adheres to the defined rules of the system (e.g., correct format,
timely submission) without needing to expose the details of the
share or the identity of the submitter.

In practical implementation terms means each party authorised to
submit shares is registered in the system with specific permissions
and roles defined via a multi-sig protocol:

• When a party attempts to submit a share, they must first prove
their authorisation using a ZKP. This proof confirms their role and
permission without revealing their identity or credentials. The
party then submits the share, accompanied by a ZKP that validates
the integrity and validity of the share itself. This ensures the share
is correct and fits the expected parameters set by the secret sharing
scheme.

• The filesystem, upon receiving a share submission, checks the ZKP
for authorization and then verifies the ZKP for share integrity. If
both proofs are valid, the share is accepted into the system for
eventual secret reconstruction.

This approach ensures that only authorised parties can submit
shares, protecting against unauthorised access and fraudulent sub-
missions. The use of ZKPs maintains the privacy of the share and the
anonymity of the submitter, crucial for security and compliance.

By using zero-knowledge proofs in this manner, we enhance both the
security and privacy of the share submission process in the filesys-
tem. ZKPs facilitate a robust verification mechanism that ensures
compliance with system rules and integrity of the data, all while
maintaining the necessary confidentiality and anonymity required in
sensitive operations like secret sharing as used here.

To counter replay attacks several strategies are employed that ensure
that even if a valid transaction or share submission is captured by an
attacker, it cannot be reused maliciously. Here are key methods we
use to prevent replay attacks:

• Unique Identifiers: Each transaction or share submission includes
a nonce (a number used once) that is unique to that specific action.
The system tracks all nonces used and rejects any transaction with
a nonce that has been used previously.

• Timestamps: Additionally, timestamps are used to ensure the
freshness of a transaction. The system can reject transactions that
carry a timestamp outside of an acceptable time window. Timewindow is specifically mentioned

in the PinkScorpion patent.
• Track State Transitions: In the filesystem scheme the transaction

that leads to a Shamir operation is a consequence of a control state

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 12

egine. Transactions that do not logically follow the current state
(e.g., attempting to use a share that has already been used for
reconstruction) are automatically rejected.

Shares Repositories

Redis is an excellent choice for storing shares resulting from the
Shamir’s Secret Sharing process due to several reasons:

• High Performance: Redis is an in-memory data structure store,
which allows it to perform read and write operations at high
speeds. This is crucial for operations that require quick access
to data shares, such as those involved in cryptographic processes.

• Reliability: Redis provides persistence mechanisms that help en-
sure data is not lost even in the event of a system failure. This is
achieved through point-in-time snapshots or append-only files
(AOF).

• Replication: Redis supports master-slave replication, allowing
data from the master server to be replicated to one or more slave
servers. This helps in providing redundancy and increasing data
availability, which is vital for maintaining the integrity and avail-
ability of shares in a distributed system. This is crucial in defend-
ing against a DDOS attack.

• Data Structure Variety: Redis supports various data structures
such as strings, hashes, lists, sets, and sorted sets with range
queries. This versatility is beneficial when implementing a filesys-
tem.

• Atomic Operations: Redis supports atomic operations on complex
data types, which is essential for ensuring data integrity during
concurrent accesses and modifications.

Using Redis as a key-value store for the shares in a Shamir’s Secret
Sharing implementation provides a robust, scalable, and efficient
solution for managing sensitive data in a secure and distributed
environment.

Cassandra is also a good choice for managing high volumes of
key-value data where rapid access and redundancy based on repli-
cation are required. Here are several reasons why Cassandra is well-
suited to the provenance tracking fileystem regime:

• High Performance for Writes: Cassandra offers excellent write
performance, which is a critical factor when dealing with high
volumes of data. It achieves this through its log-structured merge-
tree (LSM tree) storage mechanism, which is optimised for high
write throughput.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 13

• Scalability: Cassandra is designed to scale horizontally; you can
increase capacity by adding more nodes to the cluster without
downtime. This scalability is crucial for handling large volumes of
data and user requests.

• Distributed Architecture: Data in Cassandra is distributed across
multiple nodes in the cluster, which not only helps with load
balancing but also ensures that there is no single point of failure.
This distribution is key to achieving rapid access from different
points in a network.

• Tunable Consistency: Cassandra allows you to choose the level of
consistency you need for read and write operations. For scenarios
requiring rapid access, you can opt for lower consistency levels
to achieve faster response times. For operations requiring higher
accuracy, you can choose stronger consistency levels.

• Data Redundancy: Cassandra automatically replicates data across
multiple nodes. The replication factor is configured based on your
redundancy needs. This replication is crucial for ensuring data
availability and durability, even in the event of node failures.

• Decentralised Operation: There are no master nodes in Cassandra;
all nodes are the same, which removes bottlenecks and single
points of failure. This decentralised nature enhances the system’s
ability to handle large volumes of requests and data.

• Flexible Data Storage: While Cassandra excels at handling wide
column storage, it can also effectively manage simple key-value
pairs. This flexibility allows it to be used in various applications
where rapid access to key-value data is necessary.

Robust Ecosystem and Community Support: Being an open-source
project with strong backing and widespread use, Cassandra has a
robust ecosystem and community. This support is invaluable for
troubleshooting, optimisations, and learning best practices for de-
ployment. Given these characteristics, Cassandra is well-equipped
to handle applications that require managing large volumes of key-
value data with requirements for rapid access and high availability
through data replication.

Cassandra, unlike Redis, does not have the same type of size restric-
tions related to the volume of data stored, primarily because it does
not rely on keeping all data in memory. For large data volume Cas-
sandra is used by the Lockular filesystem as the storage engine for
the shares.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 14

Here are some key points regarding Cassandra’s capacity and scala-
bility:

• Storage Capacity
Disk-Based Storage: Cassandra is designed to handle large amounts
of data stored on disk. This allows it to manage data volumes that
far exceed the size of the available RAM. The primary limitation
in terms of data size is the disk space available across the nodes in
the cluster.

• Scalability
Horizontal Scaling: Cassandra scales horizontally by adding more
nodes to the cluster. This means that as your data grows, you
can expand your cluster to handle this increase. Each node in the
cluster handles a portion of the data, distributing the load and
storage requirements.

• Performance Considerations
Read/Write Throughput: While Cassandra can handle large vol-
umes of data, the configuration of the cluster (number of nodes,
network setup, disk speed, etc.) will affect read and write per-
formance. Proper tuning and hardware selection are crucial for
maintaining high performance. Lockular’s filesystem allows for
tuning via a set of profiles.

• Data Distribution
Partitioning: Similar to Redis, Cassandra automatically partitions
data across the cluster using a partition key defined in the data
schema. This distribution helps in managing large datasets effi-
ciently but requires careful design to avoid hotspots where too
much data or too many requests are directed at a single node. The
filesystem design reflects a partioning schema that optimises the
storage of file blocks.

• Replication and Redundancy
Replication Factor: Cassandra replicates data across multiple
nodes to ensure availability and fault tolerance. The replication
factor is set according to the application’s needs for redundancy.
Higher replication factors increase data availability and durability
but require more storage space and can impact write performance.

• Maintenance
Compaction and Repair: As Cassandra is a disk-based system, it
requires regular maintenance operations such as compaction (re-
organizing data on disk to maintain performance) and repair (syn-
chronizing data across replicas). These operations are essential for
long-term performance and consistency but is resource-intensive.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 15

• Node Limits
Practical Limits: While theoretically, you can continue to add
nodes to a Cassandra cluster, practical limits are imposed by
management complexity, network bandwidth, and latency con-
siderations. Very large clusters (hundreds of nodes) require careful
planning and management.

In summary, Cassandra does not have inherent limitations on the
volume of data it can handle, like Redis does with its memory-based
storage. However, managing very large datasets in Cassandra re-
quires careful planning regarding cluster configuration, node re-
sources, and maintenance practices to ensure that the system remains
performant and manageable. Lockular is able to advise on deploy-
ment configurations.

Technical Challenges and Solutions

Consider challenges across the architecture....

The biggest challenge to launch on to mainnet is obtaining a lease for
a parachain slot. Work during 2023-2024 is seeing the introduction of
a more granular approach labelled CoreTime. But first we will discuss
leasing a Polkadot parachain slot. This involves participating in a
parachain slot auction, a competitive and permissionless process
designed to allocate slots on the Polkadot Relay Chain to various
blockchain projects. Here’s a brief overview of the process:

• Parachain Slots: Parachain slots are limited time slots available on
the Polkadot Relay Chain where individual blockchain projects
(parachains) can operate and benefit from the shared security and
interoperability provided by Polkadot.

• Parachain Slot Auctions: To secure a parachain slot, projects must
participate in an auction. These auctions use a candle auction
format, which is a historically proven method where the exact
ending time of the auction is not known to participants to prevent
last-minute bidding wars. Parachain slot auctions are not that

practical particularly when the applica-
tion of parachain will expload• Crowdloans: Many projects fund their bids through crowdloans,

gathering DOT (the native token of Polkadot) from supporters.
In return, supporters are usually rewarded with the project’s to-
kens. This allows projects to raise the necessary funds to bid in the
auction without selling tokens directly at an early stage.

• Bidding Process: During the auction, projects place bids on how
much DOT they are willing to lock up for the duration of the
slot lease. The project that bids the highest amount of DOT will
generally win the slot.

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 16

• Lease Duration: Parachain slots are leased for a specific period, not
owned permanently. This period can vary but is divided into lease
periods (each several months long). Projects can bid for multiple
consecutive lease periods.

• Slot Renewal: As the lease period approaches its end, projects can
participate in subsequent auctions to extend their lease on the
parachain slot.

• Return of Locked DOT Once the lease period is over, the locked
DOT is returned to the project or its crowdloan contributors, de-
pending on the initial arrangement.

• Integration and Launch

After winning a slot, the project can integrate with the Polkadot net-
work and begin operation as a parachain, leveraging the network’s
shared security and interoperability features. This process is crucial
for projects seeking to become parachains on Polkadot, as securing a
slot is necessary to enjoy the benefits of the Polkadot ecosystem. The
competitive nature of the auctions ensures that slots are allocated to
projects with substantial community support and readiness for de-
ployment. This model can stiffle ubiquitous adaption of parachains.

A Remedy

Coretime is an innovative new feature (2023) designed to optimise
the allocation and management of blockspace across the network,
addressing some of the challenges associated with parachain slot auc-
tions. Here’s how Agile Coretime helps solve the bottleneck problem
of Polkadot slot auctions:

• Flexible Blockspace Allocation: Agile Coretime allows projects
to access the right amount of blockspace for every stage of their
growth, which means they never overpay for blockspace. This
flexibility helps new and smaller projects enter the ecosystem
without the need for large upfront investments.

• Bulk and On-Demand Coretime: Projects can purchase coretime
in bulk in advance, which is automatically renewed to prevent
spiking fees during periods of high demand. Additionally, on-
demand coretime is purchased in smaller amounts, removing
entry barriers for newer projects or those with variable blockspace
needs. Coretime slots may be minted as NFTs!

• Secondary Markets for Coretime: Coretime is traded on secondary
markets, allowing projects to sell excess coretime or purchase ad-
ditional coretime as needed. This market-driven approach helps

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 17

ensure that blockspace resources are used efficiently and are acces-
sible to a wider range of projects.

• Predictable Pricing: By securing bulk coretime at a fixed price,
projects can plan for long-term growth without worrying about
fluctuating costs due to changes in demand for blockspace. This
predictability is crucial for sustainable development and financial
planning.

• Coretime Chain: The management of coretime will be centralised
on the Coretime Chain, a dedicated marketplace for all things
related to coretime. This specialised chain facilitates the buying,
selling, and management of coretime, streamlining the process and
making it more transparent.

• Integration and Accessibility: Coretime functions is accessed pro-
grammatically (e.g., over XCM or interacting with the Coretime
Chain via Polkadot JS libraries), manually, or via user interfaces
designed for this purpose. This accessibility ensures that projects
of all sises and technical capabilities can effectively manage their
coretime needs.

By introducing Agile Coretime, Polkadot is aiming to alleviate the
competitive pressure of parachain slot auctions, making the ecosys-
tem more accessible and efficient. This approach will not only sup-
ports the growth of individual projects like Lockular’s filesystem but
also it enhances the overall scalability and flexibility of the Polkadot
network. Lockular’s present filesystem implementation is focused
on the use of the coretime approach to gain access to the polkadot
validator capability.

Implementation

Implementing a filesystem protocol with state transitions modeled
in a Polkadot parachain involves several key steps, leveraging the
unique capabilities of the Polkadot network, such as shared security,
interoperability, and the modular framework provided by Substrate
(the development framework for building parachains). The steps
involved are:

• Design the Filesystem Architecture:

Define State and Transactions: Determine what constitutes the
state of the filesystem (e.g., file metadata, access permissions) and
the transactions that can alter this state (e.g., create, delete, modify
files).

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 18

Allow for Identity Roles and Permissions: Define different roles
within the system, such as users, administrators, and validators,
and specify their permissions regarding file operations. (a future
ambition).

• Develop the Substrate Runtime

Set Up a Substrate Node: Set up a basic Substrate node containing
the rich set of tools and libraries for developing custom blockchain
logic.

Implement Custom Pallets: Custom pallets (modules) for handling
filesystem operations (FUSE and NFS). These pallets will contain
the logic for state transitions, handling transactions, and enforcing
rules.

State Transition Functions: Implement functions to handle the
state transitions based on the transactions received. This includes
validation, execution, and committing changes to the state.

• Integrate Cryptographic Techniques

Use of Cryptography: Apply zero-knowledge proofs to ensure
only valid actors take part in the Shamir protocol.

Shamir’s Secret Sharing: Implement features like secure data re-
covery and multi-party control, integrated with Shamir’s Secret
Sharing.

• Ensure Consensus and Security

Validator Setup: Define how validators are chosen, their roles in
the network, and how they participate in the consensus process.
Hopefully this is intrinsic based on the parachain chosen.

Consensus Mechanism: Adapt the Substrate’s inherent consensus
mechanisms (such as GRANDPA and BABE) to fit the needs of
your filesystem, ensuring that state transitions are agreed upon
and finalised securely. Again careful choice of parachain and im-
plementing as smart contract will mean this is inherited.

• Deployment on Polkadot

Parachain Development: Prepare the Substrate-based blockchain to
become a parachain or a parathread in the Polkadot network.

Parachain Slot Auction: Participate in a parachain slot auction to
secure a slot on the Polkadot Relay Chain, or opt for a parathread
if intermittent connectivity suffices. or use Aleph Zero.

• Launch and Iteration

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 19

Mainnet Launch: After successful testing and securing a parachain
slot, launch the filesystem on the Polkadot mainnet.

Continuous Improvement: Monitor the performance and user
feedback to continuously improve the filesystem, add new fea-
tures, and address any emerging security concerns.

Off-chain workers in Substrate are a powerful feature that al-
lows blockchain nodes to perform intensive or complex computa-
tions, or interact with external data sources, without burdening the
blockchain’s main transaction processing capabilities. This signifi-
cantly enhances the efficiency and capabilities of a blockchain system,
where the Lockular filesystem is modeled as a Polkadot parachain.
Here’s how off-chain workers are incorporated into the implementa-
tion steps of such the filesystem:

Integration with Off-chain Workers

• Step 2: Develop the Substrate Runtime

Implement Off-chain Workers: As part of developing custom pal-
lets to support the Shamir Secret Sharing approach in a multi-sig
context, off-chain workers are used to handle operations that are
computationally intensive.

• Step 3: Integrate Cryptographic Techniques

• Data Processing: Use off-chain workers are to perform crypto-
graphic operations that are too heavy for on-chain execution, such
as generating cryptographic proofs (e.g., zero-knowledge proofs)
required to authenticate Shamir shares.

• Step 4: Ensure Consensus and Security

• Data Validation: Off-chain workers can fetch and validate data
from external sources before it is used in on-chain logic. This is
particularly useful for ensuring the integrity and authenticity of
data being incorporated into the filesystem.

• Step 6: Deployment on Polkadot

• Data Handling at Scale: When deploying the filesystem, use off-
chain workers to handle scale-related tasks such as batch pro-
cessing of file operations or managing large datasets, which are
impractical to handle directly on-chain due to gas costs and per-
formance constraints.

Benefits of Off-chain Workers in Filesystem Implementation

a provenance tracking filesystem embodying provenance tracking in an easily

attachable filesystem facilitating widespread adoption. 20

• Efficiency: Off-chain workers can process transactions and perform
computations without consuming the blockchain’s resources,
leading to more efficient use of computational power and faster
transaction processing.

• Scalability: By offloading heavy computations and data handling
to off-chain workers, the filesystem can scale more effectively,
handling more complex operations or larger datasets than would
be feasible if all processing were done on-chain.

• Flexibility: Off-chain workers can interact with external APIs and
data sources, bringing a greater range of capabilities to the filesys-
tem, such as integrating real-time data or interfacing with other
systems and protocols.

• Cost-Effectiveness: Performing operations off-chain can reduce
the cost associated with blockchain transactions, which is partic-
ularly important for operations that require high computational
bandwidth or frequent data updates.

Incorporating off-chain workers into the development and operation
of a filesystem on a Polkadot parachain significantly enhances its
performance, capabilities, and user experience, making it a more
robust and versatile solution.

Cost analysis of running the Provenance Tracking Filesystem

TODO: Translate the cost in USD based on storage and validator fees.

Case Studies and Examples

TODO: Explain the Secure Design Services cloud environemnt.

Conclusion and Roadmap

The paper discussed the implementation and technical details of a
Provenance Tracking Filesystem designed to operate on a blockchain
network, specifically using Polkadot’s parachain technology. It em-
phasises the importance of maintaining immutable provenance in
respect of data stored on a filesystem where the filesystem is core in
critical infrastructure design.

	Introduction
	Detail
	Designing the Scheme
	The PinkScorpion Protocol - State Transitions
	Privacy and Security Considerations
	Implementation
	Cost analysis of running the Provenance Tracking Filesystem
	Case Studies and Examples
	Conclusion and Roadmap

